Nonlinear drift-diffusion model of gating in the fast Cl channel.
نویسنده
چکیده
The dynamics of the open or closed state region of an ion channel may be described by a probability density p(x,t) which satisfies a Fokker-Planck equation. The closed state dwell-time distribution fc(t) derived from the Fokker-Planck equation with a nonlinear diffusion coefficient D(x) proportional to exp(-gamma(x)), gamma>0 and a linear ramp potential Uc(x), is in good agreement with experimental data and it may be shown analytically that if gamma is sufficiently large, fc(t) proportional to t(-2-nu) for intermediate times, where nu=U'c/gamma approximately -0.3 for a fast Cl channel. The solution of a master equation which approximates the Fokker-Planck equation exhibits an oscillation superimposed on the power law trend and can account for an empirical rate-amplitude correlation that applies to several ion channels.
منابع مشابه
Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel
The gating of ClC-0, the voltage-dependent Cl- channel from Torpedo electric organ, is strongly influenced by Cl- ions in the external solution. Raising external Cl- over the range 1-600 mM favors the fast-gating open state and disfavors the slow-gating inactivated state. Analysis of purified single ClC-0 channels reconstituted into planar lipid bilayers was used to identify the role of Cl- ion...
متن کاملFast gating in the Shaker K+ channel and the energy landscape of activation.
An early component of the gating current in Shaker K+ channels with a time constant of approximately 12 microsec has been recorded with a high-speed patch-clamp setup. This fast component was found to be part of the gating current associated with the opening and closing of the channel. With regard to an energy-landscape interpretation of protein kinetics, the voltage and temperature dependence ...
متن کاملKramers' diffusion theory applied to gating kinetics of voltage-dependent ion channels.
Kramers' diffusion theory of reaction rates in the condensed phase is considered as an alternative to the traditional discrete-state Markov (DSM) model in describing ion channel gating current kinetics. Diffusion theory can be expected to be particularly relevant in describing high-frequency (>100 kHz) events in channel activation. The generalized voltage sensor of a voltage-dependent ion chann...
متن کاملElectrostatic Control and Chloride Regulation of the Fast Gating of ClC-0 Chloride Channels
The opening and closing of chloride (Cl-) channels in the ClC family are thought to tightly couple to ion permeation through the channel pore. In the prototype channel of the family, the ClC-0 channel from the Torpedo electric organ, the opening-closing of the pore in the millisecond time range known as "fast gating" is regulated by both external and internal Cl- ions. Although the external Cl-...
متن کاملPosition-dependent stochastic diffusion model of ion channel gating.
A position-dependent stochastic diffusion model of gating in ion channels is developed by considering the spatial variation of the diffusion coefficient between the closed and open states. It is assumed that a sensor which regulates the opening of the ion channel experiences Brownian motion in a closed region Rc and a transition region Rm, where the dynamics is described by probability densitie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 76 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2007